3.600 \(\int \frac{(1-\cos ^2(c+d x)) \sec ^4(c+d x)}{a+b \cos (c+d x)} \, dx\)

Optimal. Leaf size=155 \[ -\frac{2 b^2 \sqrt{a-b} \sqrt{a+b} \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a^4 d}-\frac{\left (a^2-3 b^2\right ) \tan (c+d x)}{3 a^3 d}+\frac{b \left (a^2-2 b^2\right ) \tanh ^{-1}(\sin (c+d x))}{2 a^4 d}-\frac{b \tan (c+d x) \sec (c+d x)}{2 a^2 d}+\frac{\tan (c+d x) \sec ^2(c+d x)}{3 a d} \]

[Out]

(-2*Sqrt[a - b]*b^2*Sqrt[a + b]*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(a^4*d) + (b*(a^2 - 2*b^2)
*ArcTanh[Sin[c + d*x]])/(2*a^4*d) - ((a^2 - 3*b^2)*Tan[c + d*x])/(3*a^3*d) - (b*Sec[c + d*x]*Tan[c + d*x])/(2*
a^2*d) + (Sec[c + d*x]^2*Tan[c + d*x])/(3*a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.569702, antiderivative size = 155, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.182, Rules used = {3056, 3055, 3001, 3770, 2659, 205} \[ -\frac{2 b^2 \sqrt{a-b} \sqrt{a+b} \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a^4 d}-\frac{\left (a^2-3 b^2\right ) \tan (c+d x)}{3 a^3 d}+\frac{b \left (a^2-2 b^2\right ) \tanh ^{-1}(\sin (c+d x))}{2 a^4 d}-\frac{b \tan (c+d x) \sec (c+d x)}{2 a^2 d}+\frac{\tan (c+d x) \sec ^2(c+d x)}{3 a d} \]

Antiderivative was successfully verified.

[In]

Int[((1 - Cos[c + d*x]^2)*Sec[c + d*x]^4)/(a + b*Cos[c + d*x]),x]

[Out]

(-2*Sqrt[a - b]*b^2*Sqrt[a + b]*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(a^4*d) + (b*(a^2 - 2*b^2)
*ArcTanh[Sin[c + d*x]])/(2*a^4*d) - ((a^2 - 3*b^2)*Tan[c + d*x])/(3*a^3*d) - (b*Sec[c + d*x]*Tan[c + d*x])/(2*
a^2*d) + (Sec[c + d*x]^2*Tan[c + d*x])/(3*a*d)

Rule 3056

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c +
d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), I
nt[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[a*(m + 1)*(b*c - a*d)*(A + C) + d*(A*b^2 + a^2*C)*
(m + n + 2) - (c*(A*b^2 + a^2*C) + b*(m + 1)*(b*c - a*d)*(A + C))*Sin[e + f*x] - d*(A*b^2 + a^2*C)*(m + n + 3)
*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ
[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3055

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e +
 f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dis
t[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b
*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(b*
c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Lt
Q[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&
  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3001

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)])), x_Symbol] :> Dist[(A*b - a*B)/(b*c - a*d), Int[1/(a + b*Sin[e + f*x]), x], x] + Dist[(B*c - A
*d)/(b*c - a*d), Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0]
 && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\left (1-\cos ^2(c+d x)\right ) \sec ^4(c+d x)}{a+b \cos (c+d x)} \, dx &=\frac{\sec ^2(c+d x) \tan (c+d x)}{3 a d}+\frac{\int \frac{\left (-3 b-a \cos (c+d x)+2 b \cos ^2(c+d x)\right ) \sec ^3(c+d x)}{a+b \cos (c+d x)} \, dx}{3 a}\\ &=-\frac{b \sec (c+d x) \tan (c+d x)}{2 a^2 d}+\frac{\sec ^2(c+d x) \tan (c+d x)}{3 a d}+\frac{\int \frac{\left (-2 \left (a^2-3 b^2\right )+a b \cos (c+d x)-3 b^2 \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{a+b \cos (c+d x)} \, dx}{6 a^2}\\ &=-\frac{\left (a^2-3 b^2\right ) \tan (c+d x)}{3 a^3 d}-\frac{b \sec (c+d x) \tan (c+d x)}{2 a^2 d}+\frac{\sec ^2(c+d x) \tan (c+d x)}{3 a d}+\frac{\int \frac{\left (3 b \left (a^2-2 b^2\right )-3 a b^2 \cos (c+d x)\right ) \sec (c+d x)}{a+b \cos (c+d x)} \, dx}{6 a^3}\\ &=-\frac{\left (a^2-3 b^2\right ) \tan (c+d x)}{3 a^3 d}-\frac{b \sec (c+d x) \tan (c+d x)}{2 a^2 d}+\frac{\sec ^2(c+d x) \tan (c+d x)}{3 a d}+\frac{\left (b \left (a^2-2 b^2\right )\right ) \int \sec (c+d x) \, dx}{2 a^4}-\frac{\left (b^2 \left (a^2-b^2\right )\right ) \int \frac{1}{a+b \cos (c+d x)} \, dx}{a^4}\\ &=\frac{b \left (a^2-2 b^2\right ) \tanh ^{-1}(\sin (c+d x))}{2 a^4 d}-\frac{\left (a^2-3 b^2\right ) \tan (c+d x)}{3 a^3 d}-\frac{b \sec (c+d x) \tan (c+d x)}{2 a^2 d}+\frac{\sec ^2(c+d x) \tan (c+d x)}{3 a d}-\frac{\left (2 b^2 \left (a^2-b^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{a+b+(a-b) x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{a^4 d}\\ &=-\frac{2 \sqrt{a-b} b^2 \sqrt{a+b} \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a^4 d}+\frac{b \left (a^2-2 b^2\right ) \tanh ^{-1}(\sin (c+d x))}{2 a^4 d}-\frac{\left (a^2-3 b^2\right ) \tan (c+d x)}{3 a^3 d}-\frac{b \sec (c+d x) \tan (c+d x)}{2 a^2 d}+\frac{\sec ^2(c+d x) \tan (c+d x)}{3 a d}\\ \end{align*}

Mathematica [A]  time = 2.50952, size = 256, normalized size = 1.65 \[ -\frac{24 b^2 \sqrt{b^2-a^2} \tanh ^{-1}\left (\frac{(a-b) \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{b^2-a^2}}\right )+\frac{1}{2} \sec ^3(c+d x) \left (4 a \sin (c+d x) \left (\left (a^2-3 b^2\right ) \cos (2 (c+d x))-a^2+3 a b \cos (c+d x)-3 b^2\right )+9 b \left (a^2-2 b^2\right ) \cos (c+d x) \left (\log \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )-\log \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )\right )+3 b \left (a^2-2 b^2\right ) \cos (3 (c+d x)) \left (\log \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )-\log \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )\right )\right )}{12 a^4 d} \]

Antiderivative was successfully verified.

[In]

Integrate[((1 - Cos[c + d*x]^2)*Sec[c + d*x]^4)/(a + b*Cos[c + d*x]),x]

[Out]

-(24*b^2*Sqrt[-a^2 + b^2]*ArcTanh[((a - b)*Tan[(c + d*x)/2])/Sqrt[-a^2 + b^2]] + (Sec[c + d*x]^3*(9*b*(a^2 - 2
*b^2)*Cos[c + d*x]*(Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] - Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]]) + 3*b
*(a^2 - 2*b^2)*Cos[3*(c + d*x)]*(Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] - Log[Cos[(c + d*x)/2] + Sin[(c + d*
x)/2]]) + 4*a*(-a^2 - 3*b^2 + 3*a*b*Cos[c + d*x] + (a^2 - 3*b^2)*Cos[2*(c + d*x)])*Sin[c + d*x]))/2)/(12*a^4*d
)

________________________________________________________________________________________

Maple [B]  time = 0.057, size = 407, normalized size = 2.6 \begin{align*} -2\,{\frac{{b}^{2}}{d{a}^{2}\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}\arctan \left ({\frac{ \left ( a-b \right ) \tan \left ( 1/2\,dx+c/2 \right ) }{\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}} \right ) }+2\,{\frac{{b}^{4}}{d{a}^{4}\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}\arctan \left ({\frac{ \left ( a-b \right ) \tan \left ( 1/2\,dx+c/2 \right ) }{\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}} \right ) }-{\frac{1}{3\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-3}}-{\frac{1}{2\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-2}}-{\frac{b}{2\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-2}}-{\frac{b}{2\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-1}}-{\frac{{b}^{2}}{d{a}^{3}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-1}}-{\frac{b}{2\,d{a}^{2}}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) }+{\frac{{b}^{3}}{d{a}^{4}}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) }-{\frac{1}{3\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-3}}+{\frac{1}{2\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-2}}+{\frac{b}{2\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-2}}-{\frac{b}{2\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-1}}-{\frac{{b}^{2}}{d{a}^{3}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-1}}+{\frac{b}{2\,d{a}^{2}}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) }-{\frac{{b}^{3}}{d{a}^{4}}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-cos(d*x+c)^2)*sec(d*x+c)^4/(a+b*cos(d*x+c)),x)

[Out]

-2/d/a^2/((a+b)*(a-b))^(1/2)*arctan((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2))*b^2+2/d*b^4/a^4/((a+b)*(a-b)
)^(1/2)*arctan((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2))-1/3/d/a/(tan(1/2*d*x+1/2*c)-1)^3-1/2/d/a/(tan(1/2
*d*x+1/2*c)-1)^2-1/2/d/a^2/(tan(1/2*d*x+1/2*c)-1)^2*b-1/2/d/a^2/(tan(1/2*d*x+1/2*c)-1)*b-1/d*b^2/a^3/(tan(1/2*
d*x+1/2*c)-1)-1/2/d*b/a^2*ln(tan(1/2*d*x+1/2*c)-1)+1/d*b^3/a^4*ln(tan(1/2*d*x+1/2*c)-1)-1/3/d/a/(tan(1/2*d*x+1
/2*c)+1)^3+1/2/d/a/(tan(1/2*d*x+1/2*c)+1)^2+1/2/d/a^2/(tan(1/2*d*x+1/2*c)+1)^2*b-1/2/d/a^2/(tan(1/2*d*x+1/2*c)
+1)*b-1/d*b^2/a^3/(tan(1/2*d*x+1/2*c)+1)+1/2/d*b/a^2*ln(tan(1/2*d*x+1/2*c)+1)-1/d*b^3/a^4*ln(tan(1/2*d*x+1/2*c
)+1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-cos(d*x+c)^2)*sec(d*x+c)^4/(a+b*cos(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.04623, size = 1045, normalized size = 6.74 \begin{align*} \left [\frac{6 \, \sqrt{-a^{2} + b^{2}} b^{2} \cos \left (d x + c\right )^{3} \log \left (\frac{2 \, a b \cos \left (d x + c\right ) +{\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt{-a^{2} + b^{2}}{\left (a \cos \left (d x + c\right ) + b\right )} \sin \left (d x + c\right ) - a^{2} + 2 \, b^{2}}{b^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + a^{2}}\right ) + 3 \,{\left (a^{2} b - 2 \, b^{3}\right )} \cos \left (d x + c\right )^{3} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \,{\left (a^{2} b - 2 \, b^{3}\right )} \cos \left (d x + c\right )^{3} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \,{\left (3 \, a^{2} b \cos \left (d x + c\right ) - 2 \, a^{3} + 2 \,{\left (a^{3} - 3 \, a b^{2}\right )} \cos \left (d x + c\right )^{2}\right )} \sin \left (d x + c\right )}{12 \, a^{4} d \cos \left (d x + c\right )^{3}}, -\frac{12 \, \sqrt{a^{2} - b^{2}} b^{2} \arctan \left (-\frac{a \cos \left (d x + c\right ) + b}{\sqrt{a^{2} - b^{2}} \sin \left (d x + c\right )}\right ) \cos \left (d x + c\right )^{3} - 3 \,{\left (a^{2} b - 2 \, b^{3}\right )} \cos \left (d x + c\right )^{3} \log \left (\sin \left (d x + c\right ) + 1\right ) + 3 \,{\left (a^{2} b - 2 \, b^{3}\right )} \cos \left (d x + c\right )^{3} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \,{\left (3 \, a^{2} b \cos \left (d x + c\right ) - 2 \, a^{3} + 2 \,{\left (a^{3} - 3 \, a b^{2}\right )} \cos \left (d x + c\right )^{2}\right )} \sin \left (d x + c\right )}{12 \, a^{4} d \cos \left (d x + c\right )^{3}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-cos(d*x+c)^2)*sec(d*x+c)^4/(a+b*cos(d*x+c)),x, algorithm="fricas")

[Out]

[1/12*(6*sqrt(-a^2 + b^2)*b^2*cos(d*x + c)^3*log((2*a*b*cos(d*x + c) + (2*a^2 - b^2)*cos(d*x + c)^2 + 2*sqrt(-
a^2 + b^2)*(a*cos(d*x + c) + b)*sin(d*x + c) - a^2 + 2*b^2)/(b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + a^2)) +
 3*(a^2*b - 2*b^3)*cos(d*x + c)^3*log(sin(d*x + c) + 1) - 3*(a^2*b - 2*b^3)*cos(d*x + c)^3*log(-sin(d*x + c) +
 1) - 2*(3*a^2*b*cos(d*x + c) - 2*a^3 + 2*(a^3 - 3*a*b^2)*cos(d*x + c)^2)*sin(d*x + c))/(a^4*d*cos(d*x + c)^3)
, -1/12*(12*sqrt(a^2 - b^2)*b^2*arctan(-(a*cos(d*x + c) + b)/(sqrt(a^2 - b^2)*sin(d*x + c)))*cos(d*x + c)^3 -
3*(a^2*b - 2*b^3)*cos(d*x + c)^3*log(sin(d*x + c) + 1) + 3*(a^2*b - 2*b^3)*cos(d*x + c)^3*log(-sin(d*x + c) +
1) + 2*(3*a^2*b*cos(d*x + c) - 2*a^3 + 2*(a^3 - 3*a*b^2)*cos(d*x + c)^2)*sin(d*x + c))/(a^4*d*cos(d*x + c)^3)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-cos(d*x+c)**2)*sec(d*x+c)**4/(a+b*cos(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.24251, size = 359, normalized size = 2.32 \begin{align*} \frac{\frac{3 \,{\left (a^{2} b - 2 \, b^{3}\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right )}{a^{4}} - \frac{3 \,{\left (a^{2} b - 2 \, b^{3}\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right )}{a^{4}} + \frac{12 \,{\left (a^{2} b^{2} - b^{4}\right )}{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{\sqrt{a^{2} - b^{2}}}\right )\right )}}{\sqrt{a^{2} - b^{2}} a^{4}} - \frac{2 \,{\left (3 \, a b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 6 \, b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 8 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 12 \, b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 3 \, a b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 6 \, b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}^{3} a^{3}}}{6 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-cos(d*x+c)^2)*sec(d*x+c)^4/(a+b*cos(d*x+c)),x, algorithm="giac")

[Out]

1/6*(3*(a^2*b - 2*b^3)*log(abs(tan(1/2*d*x + 1/2*c) + 1))/a^4 - 3*(a^2*b - 2*b^3)*log(abs(tan(1/2*d*x + 1/2*c)
 - 1))/a^4 + 12*(a^2*b^2 - b^4)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(-2*a + 2*b) + arctan(-(a*tan(1/2*d*x + 1
/2*c) - b*tan(1/2*d*x + 1/2*c))/sqrt(a^2 - b^2)))/(sqrt(a^2 - b^2)*a^4) - 2*(3*a*b*tan(1/2*d*x + 1/2*c)^5 + 6*
b^2*tan(1/2*d*x + 1/2*c)^5 + 8*a^2*tan(1/2*d*x + 1/2*c)^3 - 12*b^2*tan(1/2*d*x + 1/2*c)^3 - 3*a*b*tan(1/2*d*x
+ 1/2*c) + 6*b^2*tan(1/2*d*x + 1/2*c))/((tan(1/2*d*x + 1/2*c)^2 - 1)^3*a^3))/d